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Recursive algorithm for evaluating vertex-type Feynman 
integrals 

A I Davydychevtf 
Inslituul-brenlz, University of Leiden. POB 9506, w ) O  RA Leiden, n e  Netherlands 

Rmived XI April 1992 

A b s I m L  An algorithm for evaluating vertex-type loop integrals is considered. It is 
bawd on applying the integration-@-parts technique. As an example, a class of massless 
integrals mrresponding to Viangle diagrams is considered. The presented method can 
also be applied U) loop diagrams wilh larger number of Btlernal lines as well as 10 
integrals wilh massive denominators. 

1. Introduction 

There are many important problems in contemporary elementary particle physics 
which require the development of effective methods, and algorithms, for evaluating 
Feynman loop diagrams. In particular, we mention the calculation of radiative 
corrections to various processes of elementary particle interaction, examination of 
Green function behaviour, studying coefficient functions in operator expansions, 
renormalization group analysis of /3-functions, etc. Many appropriate references can 
be found, e.g. in reviews [1-4]. It should be noted that, up to the present time, the 
greatest success has been achieved in calculating various massless propagator-type 
loop diagrams. At the same time, the vertex-type diagrams (with three or more 
external lines) are also very important for studying many problems. 

in reaiistic calculations we are often confronted with the necessity of evaluating 
Feynman integrals with different powers of denominators corresponding to the 
propagators of ‘internal’ particles. For example, such integrals occur in the following 
GlseS: 

(i) when we deal with vector particles in covariant-type gauges (with the exception 

(ii) when some of the external momenta of the diagram vanish; 
(iii) when we differentiate the diagram with respect to the external momenta or 

masses (for example, when we use the sum rules method); 
(iv) when we examine the compatibility Of power-like solutions with loop equations 

for Green functions (e.g. when we study whether the l / k 4  infrared behaviour of the 
gluon propagator is mnsistent with the Schwinger-Dyson equations for the propagator 

of the Feynman gauge); 

ana fgr the vpl!ex; =.e also the review p]!; 
(v) when we use the technique [6] to Educe tensor integrals to scalar ones; etc. 
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The present paper is devoted to examination of some problems of evaluating 
vertex-type integrals. As an example, we regard a class of vertex-type integrals 
mrresponding to ‘triangle’ massless Feynman diagrams. In section 2 we present some 
results for these integrals obtained by use of the Mellin-Barnes mntour integral 
representation and Feynman parameters. In section 3 we consider the recursive 
algorithm for calculating vertex-type integrals with different integer powers in the 
denominators. This algorithm is based on using the integration-by-parts technique 
[I. In section 4 we formulate the main results and discuss the application of the 
method to more complicated integrals. 

2. Some results for triangle massless diagrams 

Let us consider the massless triangle diagram (see figure 1) with arbitrary external 
momenta p , ,  p2  and p 3  ( p I  + p 2  + p3  = 0)  . The corresponding Feynman integral is 
of the following form: 

where n is the spacetime dimension (in the framework of dimensional regularization 
[SI), and vi ( i  = 1,2,3) are the powers of denominators (or indices of the 
lines). As a rule, we shall put n = 4 - 2E ( E  --t 0). Nevertheless, the algorithm 
considered below can be applied to any values of n. In (2.1) it is understood 
that we use the ‘causal’ prescription for singularities in the pseudo-Euclidean space: 
l / ( (q  + k ) 2 ) v  - l / ( ( q  + k ) 2  + io)”. As a rule, we shall consider that the indices 
vi are integers. We also note that integrals (2.1) are symmetric with respect to the 
permutations of (pi,  vI) ,  (pZr 4 ( ~ 3 ,  u3). 

Flgum 1. m e  arrangement of momenta in a triangle diagram. 

If one of the indices vi vanishes then the integral (2.1) can be expressed through 
the well known one-loop two-point integrals I ( v ,  dip) ( p  is the external momentum): 

n/2-u,-”2 J ( y , u 2 , 0 )  = I ( U 1 , U Z l P 3 )  = 57 n12i1-n G( VI, u2)(p$)  

J(O,+,v,)  = I ( ~ Z , V 3 1 P I )  = 71 

(2.2) 
“ 1 2  .I-,. n p ” ,  --I, 

G(vz, v ~ ) ( P : )  a / 2 i l - n  

J(V1 ,o ,V3)  = I ( u l , V 3 I P Z ) = f l  1 c ( u l ? u 3 ) ( p : )  

n/2- ”1- ”3 
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where 

r ( n / 2  - v ) r ( n / 2  - u’)r(v+ v i -  n / 2 )  G(u, U’) = G(v’, U) E r(v)r(u’)r(n - v - U’) 

It can also be noted that if one of the indices vI,v2, U, is negative then this 
integral also can be reduced to two-point results (2.2). Moreover, if two or three 
indices ui are non-positive integers then these integrals correspond to ‘tadpole’ 
diagram and are equal to zero (in the framework of dimensional regularization; 
see also the review [9]). Thus, it is a most interesting problem to study the region 
where all vi are positive. In this case we shall consider the resula (2.2) as ‘boundary’ 
integrals. 

In contrast to propagator-type integrals (2.2) with a simple p e r - l i k e  momentum 
behaviour, in general the integrals (2.1) depend on three momentum invariants p i , p :  
and p i .  One can construct from these momenta squared two dimensionless variables, 
for example: 

(2.4) 

Here we are compelled to use one of the invariants, p: , as a dimensionless-making 
parameter since we have no other massive parameters in the massless case. For 
arbitrary =lues of vl ,  v2, U, and n one can derive the following two-fold Mellin- 
Barnes representation [lo]: 

1Fn/2jl-n(p:)n/2--ul--~-~~ 1 
r(vl)r(v2)r(v3)r(n- v1 - U , - V , ) ( ~ T ~ ) ~  

J(vl, h r  = 

x r ( n / 2 -  vl - v3 - t)r(v3 + s + t ) T ( v , +  v2 + v, - n / 2  + s + t )  

(2.5) 

where the integration contours separate the ‘right’ and ‘left’ series of poles of 
gamma functions in the integrand (see e.g. [ll]). It can be noted that an analogous 
representation for integrals corresponding to diagrams with an arbitrary number of 
external lines has been presented in [12]. 

Closing the s and 1 contours in (2.5) to the right yields [13]: 

l’  2r  - r (vl)r(uz)r(v3)r(n - v1 - vZ - v,) 
x {r(v3)r(vl + V, + v3 - n/Z)r(n/Z - v1 - v 3 ) r ( n / 2 -  v2 - u3) 

x F4(v3, v1 + U, + U, - n/2; 

+ yn/2-yi-y3r ( u Z ) r ( n / 2  - vl)I’(vI + v, - n/2)r (n /2  - uz - v3) 

x F4 (y ,  n / 2  - ul;u2 + U, - n / 2 +  l ,n /2  - u1 - v3 + 11x,y) 

,n/Zil-n 2 ~ I Z - Y I - Y ~ Y I  J ( v  U v ) -  ( P 3 )  

v2 + v3 - n / 2  + 1, V I +  9 - n / 2  + 111, 
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+ x n / 2 - v r w r  ( ~ ~ ) r ( ~ / 2 -  ~ , ) r ( n / 2  - v1 - u3)r(v2 + u3 - n / 2 )  
x F4 (U,, n / 2  - u 2 ; n / 2  - v2 - "3 + 1, vl + u3 - n / 2  + lJx, y) 

x ~ ( n - ~ ~ - ~ ~ - ~ ~ ) ~ ( n / 2 - u ~ ) ~ ( ~ ~ + ~ ~ - n / 2 ) r ( u ~ + ~ ~ -  n / 2 )  

+ xn/2--u2-~,  n /2-v l -u ,  Y 

x F , ( n - u ~ - u 2 - u 3 , n / 2 - y ;  

n / 2  - u2 - v3 + 1, n / 2  - ul - u3 + 111, y)} (2.6) 

where 

is the Appell's hypergeometric function of two variables (see, e.g. [ll], [14]), and 
(a)>,= r ( a + j ) / r ( a )  denotes the Pochhammer symbol. If v3,v2 or u1 vanishes we 
obtam, from (2.6), the results (2.2) while at vl + v2 -+ U, = n we get the uniqueness 
condition (see, e.g. in [U]). Using the representation (2.5) we can also obtain results 
in terms of other dimensionless combinations of momenta. 

Let us examine the important speciai case, u1 = u2 = u3 = i. men we can 
consider the limit n 4 4(& + 0), and we get 

m 

i d  

p3 
J ( L L 1 ) l n = 4  = T@( . ,Y)  (2.8) 

with 

'P(z,y) s - + InxIny F4 (1,1; 1,11z,y) (T 1 
+ 21n .(a, p4 + a d ~ d  + 21n Y(~,F,  + a p , )  
+ 2(a,ZF4 + a,a& + 2a, a, F~ + 2a, a,& + 2a, ad F ~ ) .  (2.9) 

Here we introduced notation for the derivatives of the function (2.7) with respect to 
the parameters a ,  b ,  c and d (taking into account the symmetry of (2.7) with respect 
to a and b), for example: 

etc. The coefficients of the parametric derivative expansions in I and y can be easily 
obtained by differentiation of the coefficients of (2.7), and they contain +-functions 
and their derivatives. Thus, the formula (2.8) gives us the asymptotic expansion for 
small values of I and y (with due regard for In I, In y and In I In y terms). 
'li~ pass to the standard representation of the result for J(1, I ,  1) (see e.g. [16]), 

it is convenient to use the reduction formulae for the function F4 at speciai values 
of parameters (see, e.g., 111, p 1021 or 117, p 4531). Using these formulae and 
introducing the notation 

X ( I , y ) a \ l ( l - X - y ) Z - 4 x y  (2.10) 
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we find that 

a: F~ + a, ab F~ + 2a,ac F~ + 2% a, F~ + za,a, F~ 
='(In( 1 + 2 -  2z " A )  In ( 1  - 2 i J Y  - A) 

x 

-Liz - Liz 

where Liz( I) is the Euler's dilogarithm. %king into account these conditions we get 

-2Li, l + 2 - y - X )  - 2L1z . ( l - z + , - x )  2 + _ ?  "'} (2.11) 

where X = X(z,y) is defined by the formula (2.10). The formula (2.11) gives us 
the standard representation for the integral (2.8). The results of such type are well 
known (see e.g. [16]). It should be noted that the same result (2.11) can be obtained 
by using the Feynman parametric representation, 

or by the dispersion technique (see e.g. 1181). 
In our opinion, representations of the type of (2.6) and (29) are more useful for 

studying the asymptotic behaviour of the results, while in numerical wlculations it is 
more convenient to use results of the type of (2.11). 

3. Recurrence relations and the algorithm 

Let us turn to examining integrals (2.1) with othcr positive powers of denominators 
uI,uz and U, . 'Ib do this we could use either the gcncral result (2.6) or parametric 
integral representations of the type of (2.12). Howcvcr, botn these ways are rather 
labour-consuming. In this section we shall consider the recursive algorithm for 
evaluating integrals with different powers of denominators which is based on the 

t L.**,dncdg nw-.r,*c*oir..- '-I, 
.L-- n ":-:I"- ----^,I..-" r-- .I.- ---- ~" -.-- 

X(z, y) z $1 - z - Y)Z - 41Y 
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We use the property [7] that the dimensionally regularized integrals with full 
divergence in the integrand vanish, 

We have written the equations (3.2) in such a way that on the right-hand sides we have 
integrals with the sum of the indices U = vI + uz + u3. while on the left-hand sides 
we have integrals with U = U, + y + y + 1. Thus, we can regard (3.2) as a system of 
simultaneous equations with respect to the integrals J ( u , + 1 , u 2 , u , ) , J ( v , , u 2 + l , ~ , )  
and J (  u l ,  U,, v3 + 1 )  with the determinant 

(3.3) 

Solving this system we obtain, e.g., that 

+ ( V I  + 2p2 + U3 - . )pi  - ( V I  + U2 + 2v3 - n)p: )J (v l , vZ ,  u3) 

+ ~ 2 p ~ ~ ( u I - ~ . v 2 + ~ , u 3 ) + u 3 ~ ~ ~ ( u I - ~ . u 2 , y + ~ ~  

- Y I P : J ( Y I  + 1 , V , , V 3 -  1 ) -  U z ? ~ : J ( y l r u 2 + 1 , u 3 - 1 ) )  (3.4) 

+ V , P : J (  V I  + 1,  - 1 ,  U31 + u3P:J (v1  3 v2 - 1, U3 + 1 )  

and also analogous results for J ( v !  + l,u,, - -  ul )  and J ( u ! , u 2  + 1 , ~ ~ ) .  Using these 
formulae we define three integrals on the plane n = U, + u2 + U, + 1 through the 
integral J ( U ~ , U ~ , V , )  and six contiguous integrals on the plane (T = vI + v2 + U, . 
One can easily see that, applying these formulae consecutively an appropriate number 
of times, we can express the integral with any positive integer uI ,u2 ,u3  in terms of 
J (  1 , 1 , 1 )  and boundary integrals (2.2). 



Evaluation of vertr-rype FEynnian integrals 5593 

One can obviously imagine this process by use of the (uI ,u2 ,u3)  coordinate 
space, considering the planes uI + v2 + u3 = n, U being a positive integer. We are 
interested in the region where vi > 0 ( i  = 1,2,3) .  The cases when at least one of 
the ui wnishes are trivial (2.2). The first plane containing the integral with all vi 
being positive mrresponds to the case U = 3. The corresponding integral J (  1,1,1)  
(at n = 4) was calculated in the previous section. The second plane (U = 4) involves 
three integrals with positive vi : J ( l , 1 , 2 ) , J ( l , 2 , 1 )  and J(Z , I , l ) .  Using the 
relation (3.4) at uI = u2 = u3 = 1 we get 

with E = (4 - n) /2 .  It should be noted that the term ~ J ( 1 , 1 , 1 )  disappears as 
E - 0 from the formula (3.5) since the integral J (  1 , 1 , 1 )  is finite as n -+ 4 (2.8), 
(2.9), (2.11). Thus, in the case n - 45(1,1,2)  can be expressed through boundaly 
propagator-type integrals (22) only. Using the expansion 

(p2 ) - '  = 1 - E ~n p z  + 0(2) (3.6) 

and the formula (2.3) we obtain (keeping the singular and finite as E - 0 terms only) 

with 

(3.7) 

(this is a mmmon factor for all integrals). Note that the 1 / ~  pole in (3.7) has 
infrared origin, due to the second power of massless denominator. It is understood 
in the formulae (3.6) and (3.7) that the arguments of logarithms ( p : )  are made 
dimensionless either by massive parameters of dimensional regularization [SI or by 
one of the pf (for example, by p: ). In this case we find(2.4) 

J(1 ,1 ,2)  = A(p:)-'-'- (3.9) 

The same result (3.9) can be also obtained from the general formula (2.6) (however, 
this requires a considerably more cumbersome calculation). In this section we shall 
prefer the form (3.7) rather than (3.9) to keep explicit symmetly of the results. 

The expressions for remaining integrals, J ( l , Z ,  1 )  and J(2 ,  1 ,  I ) ,  &n be obtained , .  

from (3.7) by using the symmetry properties: 

(3.10) 

(3.1 1) 



5594 A I DaTdychev 

Note that the same results (3.10) and (3.11) can also he obtained by using other 
recurrence formulae of the type of (3.4). Thus, all the integrals with U = 
U, f u2 f u3 = 4 can be expressed as E + 0 in terms of propagator-type integrals 
(2.2) and do not contain complicated functions of the type (2.11). 

Moreover, from (3.4) it is clear that, calculating any other integrals with U > 4, 
we can always express them through integrals with U = 4 and boundary integrals 
(2.2). Note that recurrence relations (3.4) cannot give us the coefficients which are 
singular in E .  Therefore, the integral J (  1,1 ,1)  will always enter with the factor E ,  

and it will disappear from the formulae as E + 0. 
Thus, we have proved that for any integer values of u I ,  U,, u3 (with the exception 

of the case u1 = u2 = u3 = 1) the integrals J ( q ,  uz, u3) (2.1) can be expressed 
as n -+ 4 ( E  -+ 0 ) in terms of linear combinations of boundary integrals (2.2) with 
regular (in E )  coefficients. Therefore, all such integrals contain powers and logarithms 
of external momenta squared only. The only ‘complicated’ integral J ( l , l , l )  is 
defined by the formulae (2.8), (2.9), (2.11). It can he noted that an analogous 
situation occurred earlier, when evaluating axial-gauge propagator-type integrals (see, 

Using recurrence relations (3.4) can he easily algorithmized. To do this, we have 
used the REDUCE system [22]. The results for some other integrals are presented in 
the appendix. 

e.g., W1). 

4. Conclusion 

Thus, using triangle massless diagrams as an example, in the present paper we have 
examined some problems of evaluating vertex-type Feynman integrals. In section 2 the 
general results (2.5) and (2.6) for integrals (2.1) were considered, and the expressions 
(2.8), (2.9) and (2.11) for the integral J (  1,1,1)  (at n = 4) were presented. In section 
3 we examined a recursive method of evaluating integrals (2.1) with other positive 
powers of denominators U; which was based on the integration-by-parts technique 
[I. It vias proved that as n - 4 the integrals with any positive values of ui could be 
reduced to two-point integrals (2.2), with the exception of the case uI = U, = u3 = 1. 
The main recursion formula (3.4) is true for any n; therefore, the presented algorithm 
can be applied to integrals with any values of the spacetime dimension. 

It should be noted that the presented technique can also he applied to vertex-type 
integrals with larger numbers of external lines N (N > 3). In this case we obtain a 
system of N equations, instead of (3.2). 

Finally, we note that the examined method can also he used to evaluate massive 
vertex-type Feynman integrals. For example, if we substitute in the integral (2.1) the 
massless denominators (q i  f k ) 2  by the massive ones, ( ( q ;  f k)* - ?n<) ,  then the 
right-hand sides of the equations (3.2) will not change while the detcrminant (3.3) 
will be of the following form: 

h a  result, the solutions of the type of (3.4) become more cumbersome. Nevertheless, 
the main features of the algorithm are also the same for the massive case. 
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Appendix 

Here we present the results for some other integrals (2.1) obtained by using the 
recurrence relations (3.4): 

- 2 ( ( P Y  + (P:Y + (m + 2 (1414  + P:P: + P ; ? 4  
+ (-(P:)* + (vi)' + ( ~ 3 ' )  In P: + ( ( 1 4 ) ~  - (!J:)' + ( I& ' )  In P: 

+ ( (PV + (pi)' - W) In P : }  (A?) 

where n = 4 - 2 ~  ~ and the factor A is defined by the formula (3.8). Here we omitted 
results which can be obtained from (Al)-(A7) by using the symmetry of the integrals 
(2.1) with respect to permutations of (v,, p , ) ,  ( u2, p 2 )  and ( u3, p 3 ) .  
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